ings of the approaching storm, were also engulphed. These called, of the storm, and were observed during dayligint of
 gale increased in atrength towards niglatiall, and during each pier were wholly destroyed, and the topmost tier of each pher were wholly destroyed, and the topmoss tier of biocksthroughout their entire leagth carice anay, so that easily into the harbome nud cuased the stean hopper within the breakwater,
According to the latest received acenuats, the piers, with the exception of the topmanit mun of blocks, are still intuct from the share to the point at which they curved to form
the closing of the harboux and it may he presumed, there the closing of the harboux, and it nay be presumed, there-
fore, that from that portion of thear length they were not fore, that from that portion of thear length they were not far yielded nuder the stress of a cyclone of what may be termed only half-cyclone power, it mast be ataradyy fancied that they would altogether disappear were they exposed to
a storm of the violence of that which occurred in 1872 It may, therefore, be traly said that the whote work will
have to be re-commenced de nowa, aud it is extremely questionable, we should siy, whether anything buth the rabble mounds yet remainugy can be utinsed towards the g7 tong in werght, which mary still remain in sitit, are utterly inadequate to resist the violence of a cyelonic storm.
Of course there will be strict inquiry as to the character of the desion which has so signally failed, ard crused so
heavy a loss both of money and life. The assertions made by many engineers and others long in advance of this catastrophe are sufficient evidence that the experimental
dimensions given by the designing engineor were foreseeu to be ntterly insuficieat. The Ceylon observer, contmenting upon the cecurrence, has thas written:"—"M his own invention, hitherto unkrown to marine engineers, has proved a failure. My. Kyle, the resident engineer of
tha Colombo works, long ago told us that if the. Madras brenkwater proved a sunceess, it would practically revolutionise the syatew of breakwater construetion, and we know expense to which Sir John Coode was patting the colony by his siow, axpensive, old-fashioned systen of eonstructiug our - Colombo-hambour wah, Such criticism wil now be pellapsed, while
It will be of interest, when considering the cause of failure, to inquire into the difierence of construction there are four courses of thres blocks in ench to the required lepth, bach block is set or bonded nearly one-half its length over addition to this vertical baud, 化隹e are five joggle holes rumning from top to bottoni of the wall. As the
work extended into deep water the wall ou the rubble Work extended into deep water the wall out the rubble
monnd consigted of a nuiform thicicness of 34f, consisting entirely of buton blocks Wa are unaware of the exact amensions, which has so signally failed. Wo betieve,
Mowever, it did not consist of more than two-thiris the however, it did not consist of more than two-thirds the
thickness of the Colombo work. The counses had no transverse bond whatever, wark the upper and lower nes were connected only by simple joggles In fact, to
quoto Ferqumn's tanton Hand-baok, Mr. Iraken was of quote Ferquan" Cayton Jatad-onok, Mr. Lavker was of al necessary, and theraforeconstrucks it without either verticanderlying blocks, where, we believe, they of introduce a boxjoggle in the contre of each bed of each block, top and
bottom. But the imuer and cuter sections of the wall have bo bom to keep them together, sad enabie them to cope rith prolonged heavy weather. ${ }^{\text {s }}$
A simgle failure, it is said, teaches us far more than do a. thousand eesses, and the unfortunate instance of the
Mrdras bre water will teash us a lesson not easily forgotten it would be hard, inteed, if engineers were never
to try and economise in work by departure from long established customs. We shonld uerer progress did such a rule hodd food in all cases; bnt probabiy in the case of
marine work, where natural forces are so difficult to estimarine work, whexe natural horces are so hitheat wo exactitude, it is better-as has been proved in the case of the Madiras breakwater-to abide by rulea
estriblished lyy kusown quecessea The uplifting force of established lyy known anecesses The uphifing force of ignored in the deaign of the bonding described. The
blocks at Colombo are, we believe, 50 tons in weight, while those which a comparatively triting cyclone has seattered at Madras, preigh but 24 tons But weight alone does not ensure stability against this force; the horizontal must be spaall compared with the vartical surfaces, or in
relation to the weights and Mr. Parke's blocks do stand on edge.

THE DTtTON PUMPING mentes
Iv is not improbabse that many of our readers have passed with a glance the report by Mr Cowper on the Ditton punping ongines, which sppeared in our hast im Pormance of those engines is, so fint as sex know, the best of which a trastworthy record exists, they. will gee that the
report in question deserves more than a supperficial examination. it is fuil of interest, and elaims careful analysis The engines axe two in number, counpound, with beams notativewneers, They are, in shon, oculiarity about them is that they are fitted with what was christened long since in the Navy, Cowper's "Hot-pot". In other words, the steam from the boiler: Each pair of engines consists of one high-pressure cylinder, 21 in , in diameter and 5 ft . 6 in ,
stroke; and one low-pressure cylinder, 36 in , diameter and sit. Gin. stroke. These cylinders stand each one under its
own beam, zud between them is phaced the intermediat
receiver or hot-pot, a cyinder about as large na the lowpressire cylinder. The engines work ermkantrightangles at the ends of the fly wheel ghafts, aud the plangerpumps are worked direct fropa the beams with a stroke of the extarough from the light-pressure fill-wesstre stean from the boiler on both sides of it in the hot-pot, and by this means the stena condensed in the light-pressure
 occasion dwelt on the intyrortance of uning dry stean in the laxge cylinders of componind eugines. Mr. Cowper's figores conarm the accuracy of our commasion; they alan sipport essential to evonomy, the foiler pressure at Jition being only abont 7it H, absolute. The conditions of the any error could have crept in ; yet the engines used hour. Ta this must be added the steam condeased in the jackets and hot-pot. This was not measared, but amounted, cocording to messrx sitapson, to a hittle over 2 at pe per horse per hiour, hus bringig the total consumption up
to, say, 15.5 Hb . The best resulta we cant compare these figures with are those got from a Siltaire engine men it has also been stated thate some punping engines in the United Sta constructed by Mr Eeavilt, get on with 10 lb. buat of this we have no trust worthy proof Mr, Glark gives the best result for compound engines as poub 18 as perthaps slighitiy beaten the saltaire engine, but wo think trustworthy record has ever before been publishled of a perComance in which the engme use han it is bon per indicated horsc-poyer per howr. When it is borne ier when an engine is adready very economicai, it will be when that the performance of the Ditton engines is really phenomenal.
It appears from the diagrams that steam was cat of i the small cylinder at about one-ighth of the stroke. Th clearance is, we know, very stuall. The high-pressure piston has an area of $34636 i n ;$ the stroke is 6031, and
one-ighth of thiss is 825 one-eighta of this is 82 sin , allowing hard an inch, as equivalent to ctearance in ports, pask iges, and citing stean per stroke, or per mimute, $133,349 \mathrm{in}$. $=7417$ eabic fee per minute, and per hour 4630 cubic feet, weighing 8144 lb Assuming a fifteen-fold expansion, is lb. initial pressure and $1 \% \mathrm{lb}$. back pressure, the calculated power of each engine, byperbolie, would be 127 indicated horses, proving that the eurves were very nearly hyperbolic. It was actually 120 horse power in round sumbers. The consumption on densation, was but $5 \% \mathrm{fl} 6 \mathrm{Ib}$ per indicated horse-power Such a reanit is absolutely unprecedeated. It will be seen that onr figures are hased ou the point of cat-oif, as shown by the indicator. In other words, on the cubic space filled at the beginuing of eich stroke with steam, and not on the nominal cat-off. We have before us a tabie of some of the finest rasurts ever got from stearn engines; pickiag ib per horse per hour by the indicator; a " 72 in, engise at the East Lomfon Waterworks requires 13.08 lk; the low-pressure cylinder of a pair of compounda by Mesarz of t eourpound esgine by Messras, Donkia requires 1009 M . If we corapare even this lisst figare with the perfornance anorm Ditton engines, it will be gen that team per hors per hour. The ratio which the steam, as measured by the indicator, bears ta thist setually tsel, was in the case of the Donkin engine 100 to 203 ; that is to say, 103 per ceat more steam was need than the-indicator mecounted for In the Ditton engines the steam actually used was a little mors than 134 per cent in excess of that accounted for by the -indicator. We may say again that this result is unparalleled by tire performance of any good engine with which we are acquantiont krown to ecience the condensation of stean in an exgine must be very great. It may be urged that the 8.884 llh , of steam condensed per hosse per hour in the cyliuders, jackets, and hot-pot was condenced in lie perf thance or work, the casse, is nasuming the mitian cyliaker pressare to have and the termimal temperature of the steam 107 deg., the condensation of about 83 lb . of steam would have suftice hour. Accordingly, we have a condeusation of 6.584 lh per horse per hour to le explained. Thix was due, of course, to the usaal causex, namely, the mabinity of th jackets to prevent condensation froms taking phace in a
eplizder exposed to considerable alterations in temperature. putting on one side the question of relative por mance, is a curious fact that this is absolntely a very much larger condensation than takes place in engines in which no re ongine to which we have aiready referred only uses 20 per cent more steam than is acconnted for by the indicaton Its actual consumption is 17.4 Ih. of steam per horse per have and 20 per cent. of this is 348 lh , as the quantity condense per horse per hour. Other instances might be cited if it wer necessary. In oxder, however, to draw a proper compari son of this kind it is eseenial that the steam be worke under the same conditions of expansion and pressure in the cases compared. The advantage of the hot-pot lies not in cylinder, but in redraing the lose sy compared with the grade of expansion. For example, it has hithorto been foume out bring to expana steam anything like fiftees-1.ia with an expine which we teasted some years ago steam of 80 lb an engine whan we tasted some yeara ago steam of 801
tity used was 22 ll , per horze per hour. Assuming that
it was as effacient in thas engine as in the Ditton ellgines, it was as eftciant in this engie as in the Ditton eughes, nud the difference, 15384 lb ., would lisye The greater the range of expansion the less will be the quantity of steam necomted for by the indicator, nud the greater the quantity, other thiugs being equal, condensed
in the cylinders for sonue reason not fulty understool, o vory amall quantity of wator in a cylinder enornously angnents the eondeusalion, The hot-pot seena to phay whatever to help the lifgh-pressure cylinder, but it no donbt augments the power given off by the low-pressine cylinder; and thing seems to be extirely s cesnute in that the steam, and not of heating it. Indeed, the temperature of the steam ns it enters the low-pressure cyliader at Ditton iss, we are informed, not more than 5 deg. or 6 deg higher than that of the same steam hefore it passen
through the hot-pot If our readers will turn to the aceount of the perfornance of a compomd engine by Messrc Richard Garrett and Son, which appeared in orr impression for 26 th November, 1880 -the only compound portable engme which we have as yet had an oppiortunity was got from it. All through the engine is non-condensing ; it reqnired but. 22.8 Ib . of steant per horse per hour, mainly due to the circumstauce that the pressure in the intermediate receiver: was raised high enough to pressurs cylinder ; consequently the large cylinder was sipplied wha cylinders is very different, the greateat power heing got from the low-pressure cylinder, Batthis is not an msur nountable abjection, and the system is very simple, and axsily applied m practice.
It will periapa not have escaped notice that the boilers at Ditton vere abnormally economical, and this although as Mr. Cowper talls was, the furnaces were not quith what hers
would have liked them to be. It will be seen that had to evaporate $15 \% \mathrm{ib}$. of water from an average tempera hanall frosably 92 deg. of wis hesitation in saying that this again is an umparalleled result Nothing at ail approselting it has ever before been recoxded of a plain Cornish boiler. We have found $9 \%{ }^{\circ} \mathrm{lb}$. of wate per pound of coadthe highestdaty that cond be got from tw is as good as Nixon's navigation. The grates were speeiall adapted for buming this conl, sund the bxidgee had been altered to get the best posesble result; in addition th feed-water was heated to 180 deg Oar readers will, We
think, join with us in saying that it is desirable that Mr think, join with us in saying that it is desirabia tari mo anca of the Ditton eugines and boilera more fully than he has done in his meagres report. We have, as we have said an amost, if not altogether, unparallelea perzormance some explanation from the man who has seeurei sh wonderfal a resalt.

TELEPBONE WIRES OVKR TMOROUGMFARRS
ML. Jons Walsh, telegraphic engineer, Strefford, near Manresults of his examination of the several lines of over-homese tolegraph and tetephone wires in the thoughi Writh he Postany dificulty, bntt with all over-honse wires one or two conditions ghould be insisted on. Chief among these arre-(1) All over-house wires erossing streets or parallel to streeta there there are
 for the fire-escape ; (2) over wires should crom ktreets at righ angles, and be "shanckled off" at both sides of the streest; (a) not on building Me Mr. Walsh specially compliments Messr Tasker, Sons, and Co.'s construction of their telephone and private telegraph wires, and yannions than wo theitores theorl the severe storms of October and November without injury. Thei manager, wa wirea in a good state of repair and condition. What Mr nal regulations Inid clown with reapeet to Mestrs. Tasker A wires slonul he strictly enficreed with all other owners of pirivate wirea Ahourct be allowed to bo erected withont the sanction mul approyal of the corporation being first sought for and obtaineil. phopoged tennkl under the thamzs
Sosm of the loeal authorities in the east end of Landon are Worka have a project pnder considenation for a tunnel from the Whitechapel-rond to the south side or the Thames, this being, in their opiaion, the best methot of satisiging the grant neeri o communication, It would probably be more correat to say that the tumnel is proposed in oxder to avoid the opposition of the
City authoritios whe, zppanently, will consent to nothing City authoritaes, who, appanently, will consent onotaing vested interrests of Billinggente and Thamess-itreek. At any mite in the East of London, beyond the City, the need is for the at the next meesting of the Whitechapel Distriot Peard of Work on Mondays the 19 th inste, when Mr. William Smither, the well know carrier and local representative, is to move:-m unat between tha north and sonth side of the Thames below London Rridge should be a low-level bringe" If London had n repre gentative government hire every other town and city in the
exapize, a resolution such as thiss would have had effect long ago

THE DESTHEXBE
Funther information has reached this country eoncerning
Enicsor's toryedo troat, the peatrojer. It appearg that he has abardoned the use of steam for ejecting bis torpedo fram the boat, and useas gumpowier insteach. Thus the bont really carrie a sumarine brech-loading gim. The target referred to in The
Esormysa, for Noveraber $18 t h$, was made of manila rope and
woolen shats A dunmy projectile, or onc of wood only,

 stearsman. The projectibe triveraed the troret at a depth of Fift beneath the surftice of the water, appeared on the surface
 made in three seconds, althougls the sun charge was as we have said, hett 12 hb .

amprican locomotives ix miothnd.

Tharrish engineers will be somewlat surprised to learsi that the orfer has been olutained in thiz conntry for a eomsideraste

 Enmea Cleminsan, Minc.i., Westminster, lyy a lealing North of in Baldwia's "America," "Mogul," and "Consolidation" classes, though rome alight uodifcations aro mate in the armange* ment of the compensatimg beams. The system of cumpensation weight on any road, just ous tha speculun of a large teleseope is Weight on any rood, just as tha specultap of a large teleseope in If is expeeted that the engines will show what can really be done by locomotives on the Anerican type built on the best Eugligh momein truth there is in the oft-repented statement that Aroarican locomotives will haul a greater load, weight for weights and eylinder for cylinder, than those of the Buglish type.

LITRRATURH.

Bhementury Treatise on Natural Philosophy. By A. Pratir Drschaxel Tranished aud edited by. D. Evxarev M.A, WHEx a book has reached its sixth edition, it is almost of necessity so well known, that of a new edition it is only init it It is difficult to underatand why the date 1882 should be put on the title pare, unless it is because the remarkably rapid strides being made in the applifations of electricity have made several additions necessay to the part dealing with electricity, which was published earlier this year; while to hold back the volume now before us wonk have maxte it somewhat behind the time on this in four parts, and while rofersing to the olectrical parts, we may at once mention as an illustration of the rapidity with which books on eurrent electricity become behind the time, that, though a lescomption of the Plante secondary lattery is friver in the new edition, the Faume battery is not tescribed, nor is the Planté illurtrated, nor the Varley battary mentioned, subjects which are engaging as much as any in the eicctricnl workd just now, in oher respecta,
howeyer, great additions are made to the electriaal chapters, and the deacriptions of the methods of testing ly Wheatstone's bridge or' Christie's, is perhapa it should
 as a student's book, a diarram illustration of these machines as used by Professor Adams in his Cantor lectures would have been a most nasefal addition, as showing how the magnets are wound and placed in councetion witio the stone'sobservation that the eficets are increased by diverting atonesobserctation thatithe enects are mereased of the curcent from the magnets hy meatas of at sheat poriton of and sabsequently how the work, as a lamp, was piaced in the shant are carried out There seems to he some placed in the shant are carriet out in the fescription of the device by which Plante was enabled to alter the connections of a lauge number of enahler to alter the connections of a hatge number of as ine charging is completerl, as this is called at rheostatic as the eharging is compieten, as this is colled it rueostatic confounding.
Turning back to the commencement, we find considerable alterations and additions in the chapters dealing vith hent and thermo-dynamics, The Centigrade scale is nsed throughont the hook, and this is to los commended but most Winghish yeaders will he glad to find that though lescribed we are spared at prescont the infliction of a hoot described, we are sparce at present the inhiction of a book using that system throughout; and for this we ouglat to be haskfal, when we rememiser the temptatiou that Proand Physical Constants," in which this system is developerd, and Physical Constants, in whici this system is developord, mast have experienced in rev
his hook he bad enough of it.
In the chapter on steam and other heat engines we find In the chapter on steam and other heat engines we find
little clange, and here cluange and addition might have been verg necessarily made. Stirtiag's air engine is lescribed and illustrated, but we have nothing more modern, thongh the Rider ongine is very largely in use, and Stirliag engines are obsolete. The illustrations and diagrams of steam engines are*old when they might as well show modern practice, and give students noodern ideas at onee, instead of making it necessary for them to unlearn ideas that they will gather from these old pipey, longported, and many parted engines, of the locomotive a mach more modern and accorate section might jnst a well have been given, and of the moderngasenginesomething more than perspective views should have been considered necessary by the anthor to supply the information which stadents require. Of the compound engine, too, something move that a pair of contiguons cylinders connectet by a pair of cwose pipes conld have been just as erwily ithustrated, and woud tave crabled sudents ho obtan ad of a perhaps half-forned conception of a nixture of two cylinders by plamber's aid. The steam engine may "be on its last legs," but we imagine that its last legs will mrobably last as long as its first, and therefore the steam engine might be illustrated as made now rather than made when Professor Everett was very much younger. necessary, but nobody needs to be told that Professo Everett's "Deschanel's Natural Philosophy" is amongst the its many and interesting subjects.

HURSTING OE A SPANISH CONVERTED GINN, The Meristis Gcnerad itc Marina for October gives a short aceunt of the lurstiag of a Spanibla cast iron gon lined with
 bought to 10 centimetres ($6 \cdot 3 \mathrm{in}$.) calibre The fring charge was the service one of 6 kilogramuse ($(18 \cdot 2 \mathrm{lb}$). The gin dipsums to have yidded by blowing out the ineoch end, which
flew to the rear. Figs. 2 and 3 glew that it yiehed in a line

see BB and CC Fig. 8 and Fig. 4. Tie eap which formed the botion of the bore was, of course, Blown out, to the rear with the breech, the coils into whidh it was serewed being unwound, an wn mag. and Fig. 4. Ine conls to not apiear ko haw writer of the Spanish report considereal chat whe longitucinal work was equally divided between the projectile and portion of

the breech blown ont, because tlare was little or no recon
 representative of a lange class; the queation is, how far cloes is of breech loadiog teni to limit the Ephore of converxion at apphed to our gervice cast iron guns. Nevertheleas the queation as anually fired from casti inon pieees converted into rifled gans, anmually strengthened or Sir W. Palliser's sygtem.

This gux must have yielded on the first commencement a oxplosion of the charge, and the weak place was cotermmed by the erystalime strueture at the angle of the casting. It ces bainly yieldea absefly in an arackioa in whick lining earting to be bad and inctived to yiell longiturlinaly it is evi dons that the lining camot help it to holl together: It may conversios of ecint irou ordmance This apmerns to thoki grood to this extent, uansely, that, the longitudinal strangth of a castition

ohtained fram it by convorwion. It in, however, extramely ancomraon for a gun to yiek in tais way. Generally a gan ha
 bave bia gain whed it is difficult to sqy what strain we thrown upon the piect. The charge $73 / 2 \mathrm{Hl}$. is rather large 12 ね. R. L. CX. is the largest clange we fire from our at-pounder 6.3in. wrought iron gon. The natara of the Spunish powders the projectile would toll us more than nnything ellae, We shant be inclined to think that the cunse of rupture was kimply of fack in the cast iron. One thing appeass certain, that the wroagh luas, hant the Pallizar sygtam of conversion is grool, rami we woukl point oust that in this country, as far as we know, no aecident of any kind bas occurred with it.

PUMPING. ENGINES, CANTERBURY SEWAGIE works.
Wg illustrate at page 437 pamping machinery recently confor the Canterbury Sownge Works, The price paid for thre land atifturry was £spo0, nud the cont of lunilding the work, three

sewage farm covors $22 \frac{3}{3}$ neres of land, lying to the east of Sturry road. At the pressent finter devens nches aqe devoted to the enitivation of map
The Bread Oak Sewage Forks will be ntilised as heretafore in conjuaction with the new works. The whole of the sewage manter iron the city will be conveyed to the old works in the Luguid, which after filbsation will run to the new works for irriga tion purposes as descrityed below. It is confidently believed that those will be the most perfect works in Englath earrying out the prosess of sewage irrigation. In all other instances the raw solid matter is retained at the Broad Oak Works, the eftinent water alone being squead over the hami.
In the onging house ithere are two pamping ongines of 1 it hoore prover, each eapable of cliselarging 1400 gallons yor minut up to 2 it or 30 -herse power, when they wouki eadi dinehrange 3600 gallows per rainuto. The boilers are each 5itu Bin, in dia meter; by 18 ft long, with one intenmal liue 3 ft in diameter and sas (alloway tubes They were tested up to 125 ib, to the
square inch, the prossure remaining for half an hour. There are two donkey pumps for the suppiy of water to the boilers, and one air putay for charging tue centrifugal praphs. The engine work very satisfactorily being so powerful that the sewage wate cun be carried tos within as short distance of the height of tho talle land at ficotland Hills. They can be worked together i necessary without any difficulty, and either will dibeharge Iuto gallons lyer minute An admirable supply of water is obstained from a purface well at tha depth of 20 ats, at a short distance from she engine-house, The water procetds from a bed of gravel, nud answers the purpose for which it is required perfectly. At the pumping serition there ire bwo couldes and sho it As up and delivered throunh fiva lengthe of 18 in , If in pampein up and delivered the The sevars in its passenge alount the corriems is stopped by alxice ine sewage in itstribnting walls, which are placerd at digtances of abont 20dit, apart The water rises in these untill it reaches the surface of the land, when it venses through sluices which are mate to regulate the flow of water, so that either a small or harge quin tity can be put on any partievilar piece of land, The britiding have bean erected by Mr. tohn Bingiam, of Headeorn, from the dasight and under the perronal

Naval Regnefr Apponiturnts - The following appointment

 Asia, additioun, For service in the Eqetops, nice Yaird; Fredorick
 additional \% Charles F. H. Thibrocke, assistant engineer, to the

Niw DiABiEs.-The advent of packagos of diaries, aiways wel
come in jeself, reminds us of the near deparbure of the year come in jeself, reminis buth for number and vaniety, is squefally

 diaries is immense. There axe alko Housokeeping Sxponse books
alrendy well known, and Family Rigiateras, both of which will b in reequest, Oar comteroporaty, the Chensief and Drugyist, ha
 outsio tha pala cas judge of iniormation or so tecanioal a cha it is specinlly producod. The advertiacmenis, enough of them to make one's fonmaliatic month water, are in their way mancoly less interesting than the mutter. The "Gity Diary, ${ }^{\text {c }}$ " publiaherl at th offioe of the cicy preas, is a usefut six days ma mage and ones
 title indlieates, thlis itiary contains a great deal of information on the railways of the kingdom, and their officerrs It gives ont mile
 rin tizas
 dayy evening the anunal dimner of this Sosisty was held at the Guidhall Tavern, Gresham-strenet, and was attended by nearly
100 members and fricuds. The chair was cocupied by 3ir. Onatle
 Horsley, C.E., F.G.S. In propoaims the toast of the evening,
"Suceess to the Suciety, ${ }^{\text {n }}$ the chairnan said that the Society was
nearly twenty-ight years oht that it was doint a great denl of nearly twenty-eight years ohd, that it was doint a great deni of
gooll work, and Ehat it would to much more if members evailei themsclves more of the opportunities of inspection which wer afforded by the yisits which the members were privileged to make,
and if they would state more frecly at the ordinary moetings the reflections which hed been suggested to themb by what thay saw and heari on the oceasions of those visitas. They had been per
mitted to visit, among other places, the Mint, the koyal Dockyari at Sheermass, the fortifications there, and the works of the Grea
Uastern Railway, and all ooncerned did everything in their powe Tastern Railway, and all concerned did everything in their pouper
to make the wisits as profitable to the mombers as posaible. The audjects that lumi beent discussedl at the Society's meetings hat
 had brought the total uy to 400. They were always well received wherever they went, and the advantagess of the Society's work who relied apon their tranacetions as by titose who availed them selves personally of the privileges of members. The prospects of tha profession were improving t they itid not do muck lest year but there was every prospect now that thay were going to have treasurer, and are of the formders of the Socioty, said that the
 another to bo able to give those farther inatructions which could
 said there were a good many Mills to come before Parrlinment next session, which was a good siga for tho profestion, Thene was
vast amount of work for sngineers to do in this euntrys so far from being "played out," as some said, he kelieved they frad noore advances, and engineers hati to adapt themselves to the change which nust follow. TMe toossis included the Wice-Presidentss, the Council, and the Socrotary (IIr. B. Reed), who was complimented
on his armangements for the excursions, and a good selection of

 responded to other toasts.

